Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter Hammershøj,* Erik Riis and Jørn B. Christensen

Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark

Correspondence e-mail: jbc@kiku.dk

Key indicators

Single-crystal X-ray study
$T=122 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.041$
$w R$ factor $=0.078$
Data-to-parameter ratio $=39.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1-Bromo-3,4-bis(bromomethyl)-2,5-dimethoxybenzene

1,4-Dimethoxy-2,3-dimethylbenzene was brominated under radical conditions to give the title compound, $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{Br}_{3} \mathrm{O}_{4}$. The bond lengths and angles are generally within the normal ranges. The crystal packing is stabilized by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds.

Comment

The title compound, (I), was prepared for use as a building block in the syntheses of nanotube interacting compounds. It crystallizes in the monoclinic space group $P 2_{1} / c$ with two independent molecules in the asymmetric unit (Fig. 1). The bond lengths and angles in both independent molecules (Table 1) are generally within normal ranges.

(I)

In the crystal structure, there are weak intermolecular C $\mathrm{H} \cdots \mathrm{O}(\mathrm{H} 7 A A \cdots \mathrm{O} 2 B=2.63 \AA$ and $\mathrm{H} 10 B B \cdots \mathrm{O} 1 A=2.66 \AA)$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}(\mathrm{H} 10 A B \cdots \mathrm{Br} 2 A=2.89 \AA)$ hydrogen bonds, which stabilize the crystal packing (Fig. 2).

Experimental

1,4-Dimethoxy-2,3-dimethylbenzene was prepared as described by Eskildsen et al. (2000). 1,4-Dimethoxy-2,3-dimethylbenzene ($166.22 \mathrm{~g}, 1 \mathrm{~mol}$) was dissolved in $\mathrm{CCl}_{4}(4 \mathrm{l})$ and N-bromosuccinimide ($711.96 \mathrm{~g}, 4 \mathrm{~mol}$) was added. The reaction mixture was mechanically stirred and irradiated with a 500 W halogen lamp. The heat from the

Figure 1
The structure of the asymmetric unit of (I) with 50% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radius.

Received 8 July 2005
Accepted 9 August 2005
Online 20 August 2005

Figure 2
The crystal packing, viewed approximately along the c axis. H atoms have been omitted for clarity.
lamp made the reaction mixture reflux. After 8 h of reflux the mixture was filtered while hot to remove the precipitated succinimide. The solvent was removed in vacuo. Crystallization from EtOH yielded the title compound as a white powder (yield $205 \mathrm{~g}, 51.1 \%$, m.p. 357$359 \mathrm{~K}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.10(1 \mathrm{H}, s), 4.65(2 \mathrm{H}, s)$, 4.62(2H, s), $3.87(3 \mathrm{H}, s), 3.70(3 \mathrm{H}, s) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 154.2, 148.8, 132.8, 125.8, 118.1, 116.4, 61.5, 56.3, 23.3, 23.2; MS (EI+): $404(9), 323(100)$ and 227 (44\%). Analysis calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{Br}_{3} \mathrm{O}_{4}$: C 29.95 , H 2.49%; found: C $29.81, \mathrm{H} 2.75 \%$.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{Br}_{3} \mathrm{O}_{2}$
$M_{r}=402.91$
Monoclinic, $P 2_{1} / c$
$a=16.5660(9) \AA$
$b=17.1420(16) \AA$
$c=8.6720(12) \AA$
$\beta=98.672(7)^{\circ} \AA$
$V=2434.5(4) \AA^{3}$
$Z=8$

Data collection

Nonius KappaCCD area-detector diffractometer
ω and φ scans
Absorption correction: Gaussian integration
(Coppens, 1970)
$T_{\text {min }}=0.195, T_{\text {max }}=0.419$
106756 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.078$
$S=1.16$
10710 reflections
271 parameters
H-atom parameters constrained

$$
\begin{aligned}
& D_{x}=2.199 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 47424 \\
& \quad \text { reflections } \\
& \theta=1.2-35.0^{\circ} \\
& \mu=9.92 \mathrm{~mm}^{-1} \\
& T=122(2) \mathrm{K} \\
& \text { Prism, white } \\
& 0.36 \times 0.26 \times 0.16 \mathrm{~mm}
\end{aligned}
$$

10710 independent reflections
8305 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.057$
$\theta_{\text {max }}=35.0^{\circ}$
$h=-26 \rightarrow 26$
$k=-27 \rightarrow 27$
$l=-13 \rightarrow 13$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0187 P)^{2} \\
&+7.2256 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.33 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.14 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Br} 1 A-\mathrm{C} 1 A$	$1.884(2)$	$\mathrm{C} 6 A-\mathrm{C} 1 A$	$1.385(3)$
$\mathrm{Br} 2 B-\mathrm{C} 9 B$	$1.979(3)$	$\mathrm{C} 6 A-\mathrm{C} 5 A$	$1.390(4)$
$\mathrm{Br} 2 A-\mathrm{C} 10 A$	$1.962(3)$	$\mathrm{C} 10 A-\mathrm{C} 3 A$	$1.489(4)$
$\mathrm{Br} 3 A-\mathrm{C} 9 A$	$1.977(3)$	$\mathrm{O} 2 B-\mathrm{C} 5 B$	$1.360(3)$
$\mathrm{Br} 3 B-\mathrm{C} 10 B$	$1.972(3)$	$\mathrm{O} 2 B-\mathrm{C} 8 B$	$1.427(4)$
$\mathrm{Br} 1 B-\mathrm{C} 1 B$	$1.888(3)$	$\mathrm{C} 9 B-\mathrm{C} 3 B$	$1.494(4)$
$\mathrm{O} 1 A-\mathrm{C} 2 A$	$1.373(3)$	$\mathrm{C} 3 B-\mathrm{C} 2 B$	$1.403(4)$
$\mathrm{O} 1 A-\mathrm{C} 7 A$	$1.442(3)$	$\mathrm{C} 3 B-\mathrm{C} 4 B$	$1.397(4)$
$\mathrm{O} 1 B-\mathrm{C} 2 B$	$1.373(3)$	$\mathrm{O} 2 A-\mathrm{C} 5 A$	$1.359(3)$
$\mathrm{O} 1 B-\mathrm{C} 7 B$	$1.438(4)$	$\mathrm{O} 2 A-\mathrm{C} 8 A$	$1.428(3)$
$\mathrm{C} 2 A-\mathrm{C} 1 A$	$1.392(4)$	$\mathrm{C} 10 B-\mathrm{C} 4 B$	$1.490(4)$
$\mathrm{C} 2 A-\mathrm{C} 3 A$	$1.401(4)$	$\mathrm{C} 1 B-\mathrm{C} 2 B$	$1.384(4)$
$\mathrm{C} 4 A-\mathrm{C} 5 A$	$1.403(4)$	$\mathrm{C} 1 B-\mathrm{C} 6 B$	$1.393(4)$
$\mathrm{C} 4 A-\mathrm{C} 3 A$	$1.404(3)$	$\mathrm{C} 6 B-\mathrm{C} 5 B$	$1.388(4)$
$\mathrm{C} 4 A-\mathrm{C} 9 A$	$1.490(4)$	$\mathrm{C} 4 B-\mathrm{C} 5 B$	$1.405(4)$
$\mathrm{C} 2 A-\mathrm{O} 1 A-\mathrm{C} 7 A$	$112.4(2)$	$\mathrm{C} 2 B-\mathrm{C} 1 B-\mathrm{C} 6 B$	$121.6(2)$
$\mathrm{C} 2 B-\mathrm{O} 1 B-\mathrm{C} 7 B$	$114.0(2)$	$\mathrm{C} 2 B-\mathrm{C} 1 B-\mathrm{Br} 1 B$	$119.8(2)$
$\mathrm{O} 1 A-\mathrm{C} 2 A-\mathrm{C} 1 A$	$121.4(2)$	$\mathrm{C} 6 B-\mathrm{C} 1 B-\mathrm{Br} 1 B$	$118.6(2)$
$\mathrm{O} 1 A-\mathrm{C} 2 A-\mathrm{C} 3 A$	$119.6(2)$	$\mathrm{C} 5 B-\mathrm{C} 6 B-\mathrm{C} 1 B$	$118.8(3)$
$\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{C} 3 A$	$119.0(2)$	$\mathrm{C} 6 A-\mathrm{C} 1 A-\mathrm{C} 2 A$	$121.7(2)$
$\mathrm{C} 5 A-\mathrm{C} 4 A-\mathrm{C} 3 A$	$119.1(2)$	$\mathrm{C} 6 A-\mathrm{C} 1 A-\mathrm{Br} 1 A$	$119.15(19)$
$\mathrm{C} 5 A-\mathrm{C} 4 A-\mathrm{C} 9 A$	$119.9(2)$	$\mathrm{C} 2 A-\mathrm{C} 1 A-\mathrm{Br} 1 A$	$119.14(19)$
$\mathrm{C} 3 A-\mathrm{C} 4 A-\mathrm{C} 9 A$	$121.0(2)$	$\mathrm{O} 1 B-\mathrm{C} 2 B-\mathrm{C} 1 B$	$121.3(2)$
$\mathrm{C} 4 A-\mathrm{C} 9 A-\mathrm{Br} 3 A$	$111.76(18)$	$\mathrm{O} 1 B-\mathrm{C} 2 B-\mathrm{C} 3 B$	$119.3(3)$
$\mathrm{C} 1 A-\mathrm{C} 6 A-\mathrm{C} 5 A$	$119.1(2)$	$\mathrm{C} 1 B-\mathrm{C} 2 B-\mathrm{C} 3 B$	$119.3(3)$
$\mathrm{C} 3 A-\mathrm{C} 10 A-\mathrm{Br} 2 A$	$111.47(18)$	$\mathrm{C} 3 B-\mathrm{C} 4 B-\mathrm{C} 5 B$	$119.2(2)$
$\mathrm{C} 2 A-\mathrm{C} 3 A-\mathrm{C} 4 A$	$120.3(2)$	$\mathrm{C} 3 B-\mathrm{C} 4 B-\mathrm{C} 10 B$	$122.0(3)$
$\mathrm{C} 2 A-\mathrm{C} 3 A-\mathrm{C} 10 A$	$118.1(2)$	$\mathrm{C} 5 B-\mathrm{C} 4 B-\mathrm{C} 10 B$	$118.8(2)$
$\mathrm{C} 4 A-\mathrm{C} 3 A-\mathrm{C} 10 A$	$121.6(2)$	$\mathrm{O} 2 B-\mathrm{C} 5 B-\mathrm{C} 6 B$	$123.9(3)$
$\mathrm{C} 5 B-\mathrm{O} 2 B-\mathrm{C} 8 B$	$117.9(2)$	$\mathrm{O} 2 B-\mathrm{C} 5 B-\mathrm{C} 4 B$	$115.1(2)$
$\mathrm{C} 3 B-\mathrm{C} 9 B-\mathrm{Br} 2 B$	$109.76(19)$	$\mathrm{C} 6 B-\mathrm{C} 5 B-\mathrm{C} 4 B$	$121.0(3)$
$\mathrm{C} 2 B-\mathrm{C} 3 B-\mathrm{C} 4 B$	$120.1(3)$	$\mathrm{O} 2 A-\mathrm{C} 5 A-\mathrm{C} 6 A$	$123.6(2)$
$\mathrm{C} 2 B-\mathrm{C} 3 B-\mathrm{C} 9 B$	$118.0(2)$	$\mathrm{O} 2 A-\mathrm{C} 5 A-\mathrm{C} 4 A$	$115.6(2)$
$\mathrm{C} 5 A-\mathrm{O} 2 A-\mathrm{C} 8 A$	$117.1(2)$	$\mathrm{C} 6 A-\mathrm{C} 5 A-\mathrm{C} 4 A$	$120.8(2)$
$\mathrm{C} 4 B-\mathrm{C} 10 B-\mathrm{Br} 3 B$	$111.07(19)$		

H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2-1.5 U_{\text {eq }}(\mathrm{C})$. The maximum positive and minimum negative residual electron-density peaks are situated $0.77 \AA$ from atom $\mathrm{Br} 3 B$ and $0.57 \AA$ from $\mathrm{Br} 1 B$.

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXL97.

The authors thank Flemming Hansen for collecting the diffraction data and the Centre for Crystallographic Studies for the use of their equipment.

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. \& Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.

Eskildsen, J., Reenberg, T., Larsen, U. \& Christensen, J. B. (2000). Org. Prep. Proc. Int. 32, 398-400.
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

